
1

T

Improving Performance of Content-Centric

Networks via Decentralized Coded Caching for

Multi-Level Popularity and Access
Azadeh Sadat Miraftab, Ahmadreza Montazerolghaem, Behrad Mahboobi

Abstract—Content-Centric Networking (CCN) offers a novel
architectural paradigm that seeks to address the inherent limi-
tations of the prevailing Internet Protocol (IP)-based networking
model. In contrast to the host-centric communication approach
of IP networks, CCN prioritizes content by enabling direct
addressing and routing based on content identifiers. The potential
performance improvements of CCN can be further amplified
through optimized management of coded data storage and
transmission strategies. Decentralized Coded Caching (DCC)
emerges as a promising technique that harnesses the collective
caching power of distributed network elements. By strategically
pre-positioning frequently accessed content closer to potential
consumers during periods of low network utilization, DCC has
the potential to mitigate content transfer rates during peak
traffic periods. This paper proposes a series of fundamental
modifications to the CCN architecture by integrating DCC. The
proposed framework incorporates differentiated coding strate-
gies tailored to user access privileges, thereby eliminating the
overhead associated with queue-based searching. Additionally,
the framework facilitates recoding of uncoded data encountered
along the content delivery path. These combined methodologies
demonstrably enhance network throughput, elevate cache hit ra-
tios, and consequently, reduce content delivery latency compared
to conventional CCN implementations.

Index Terms—Content-Centric Networks, Random Linear Net-
work Coding, Decentralized Coded Caching, Multi-Level Popu-
larity and Access

I. INTRODUCTION

he proliferation of mobile and smart communication

systems in recent years has coincided with a surge in

demand for video streaming services, leading to a substantial

increase in network traffic. To address the content distribution

challenges associated with this growth, novel architectural

paradigms for the future internet are necessary. Content-

Centric Networking (CCN) presents a significant departure

from the traditional host-centric communication model of the

TCP/IP architecture by prioritizing content itself. In CCN,

data packets termed ”Interests” are routed based on unique

content identifiers rather than the physical location of the

content. Network nodes leverage three key data structures to

Manuscript received 8 July, 2024; This work was developed by the IEEE
Publication Technology Department.

A. Miraftab is with the Faculty of Computer Engineering, University of
Isfahan, Isfahan, Iran. E-mail: azmiraftab@comp.ui.ac.ir

A. Montazerolghaem is with the Faculty of Computer Engineering, Uni-
versity of Isfahan, Isfahan, Iran. E-mail: a.montazerolghaem@comp.ui.ac.ir

B. Mahboobi is with Department of Electrical and Computer Eng., Science
and Research Branch, Islamic Azad University, Tehran, Iran and Industrial
Network Research center, Science and Research Branch, Islamic Azad Uni-
versity, Tehran, Iran E-mail: b.mahboobi@srbiau.ac.ir

facilitate routing: the Pending Interest Table (PIT), Forwarding

Information Base (FIB), and Content Store (CS). The CS

plays a pivotal role by enabling content caching at individual

nodes along the delivery path. This strategic caching approach

reduces the physical distance between content and users,

thereby enhancing overall network resource efficiency. Exten-

sive research has been conducted on caching algorithms within

the CCN framework, with Least Frequently/Recently Used

(LFU/LRU) and Most Frequently/Recently Used (MFU/MRU)

strategies being prominent examples, as documented in [1].

However, these existing caching schemes, while demonstra-

bly effective in single-cache scenarios, exhibit performance

limitations when scaled to multi-cache networks. Bandwidth

constraints remain a significant challenge in data transmission

scenarios. Optimizing network performance in CCN can be

achieved through a two-pronged approach: strategic caching

management at network nodes and the implementation of

content encoding techniques during data transfer.

Network coding, a method for information processing pi-

oneered by Ahlswede [2], offers a promising solution. This

technique facilitates the combination of Interests pertaining

to identical content, enabling the transmission of a single,

unified Interest packet across bottleneck links. This approach

demonstrably improves network performance metrics such

as delay and throughput. While the integration of Random

Linear Network Coding (RLNC) with CCN has been explored

extensively in prior research, this approach is not without

its drawbacks. Notably, RLNC can incur significant decoding

delays at the receiver end, as successful decoding necessitates

the reception of n independent, linearly encoded packets for

a single file. The average computational complexity of this

operation is O(N 3). Therefore, the optimization of network

coding algorithms and minimizing the computational overhead

associated with encoding and decoding processes in networks

has attracted the attention of the research community, in-

cluding sparse network coding and unequal error protection,

network coding and Instantly decoding of network coding [3].

The burgeoning storage capacities available in contemporary

network architectures have fostered the exploration of di-

verse caching strategies. These strategies encompass uncoded

caching (the traditional approach), centralized coded caching,

and decentralized coded caching. Caching schemes function

by fulfilling user requests, partially or entirely, from content

stored in local caches situated near the requesting user. Tra-

ditional caching methodologies rely on unicast transmissions

and refrain from incorporating coding techniques, thereby

mailto:azmiraftab@comp.ui.ac.ir
mailto:a.montazerolghaem@comp.ui.ac.ir
mailto:b.mahboobi@srbiau.ac.ir

2

limiting the potential benefits to the network’s overall caching

infrastructure.

Coded caching, a novel paradigm introduced by Maddah-Ali

and Niesen [4], [5], leverages coding principles to significantly

influence the performance of cache networks. This approach

enables the efficient servicing of multiple user requests through

multicast transmissions with a minimal number of coded trans-

missions. Consequently, throughput demonstrably improves as

the volume of encoded data increases within the network.

However, inherent content popularity skews access patterns,

resulting in non-uniform content access frequencies. To ad-

dress this challenge, multi-level cache systems have been im-

plemented, enabling users to access content from caches with

varying popularity levels. A key limitation exists in that users

connected to the same cache are inherently restricted from ben-

efiting from inter-user content coding due to their shared cache

association. Therefore, a critical challenge lies in developing

solutions that maximize the number of coding opportunities

that arise during interactions between user interests within the

coding process. A coloring-based placement scheme, outlined

in [6], proposes a user grouping strategy that ensures no two

users within the same group share a common cache. This

scheme capitalizes on the decentralized coded caching method,

a technique lauded for its resilience to topological changes

affecting the network connectivity between caches and the

server, as it eliminates the need for server-side reconstruction

events. In this paper, we present a novel approach that builds

upon the foundation of decentralized coded caching while

incorporating the advantages of coloring-based placement and

the inherent content-centric nature of CCN. Our proposed

method demonstrably enhances network transmission rates

by maximizing the number of coding opportunities between

user requests. This is achieved by eliminating the requirement

for searching server queues, a significant advantage over

conventional decentralized coded caching implementations. To

succinctly summarize, the key contributions of this paper are

as follows:

• Caching of content is done randomly taking into account
both popularity and cache size.

• Significant modifications have been made in CCN archi-

tecture to enable the incorporation of Multi-access Coded

Caching in CCN.

• This work implements a differentiated queuing strategy

that segregates users based on their access privileges. This

approach facilitates a significant increase in server-side

coding operations. However, this trade-off is demonstra-

bly outweighed by the elimination of search overhead

associated with conventional queuebased retrieval mech-

anisms.

• This approach is scalable and can be implemented for

any level of content popularity, as well as up to n users

requesting content.

• Recoding of data in intermediate nodes is performed on

a level-by-level basis, taking into account the content

popularity. This approach enhances the throughput.

The remainder of this paper is meticulously structured to

facilitate the dissemination of the presented research. Section

II furnishes a comprehensive review of germane research

efforts in the domains of Content-Centric Networking (CCN),

random linear network coding, and coded caching. Subse-

quently, Section III delves into the integration of a decen-

tralized coded caching approach and a multi-level content

popularity model within the CCN framework. This section

meticulously details the architectural modifications undertaken

to accommodate these enhancements. Section IV rigorously

evaluates the performance characteristics of the proposed

solution and compares them to the baseline performance of the

conventional CCN architecture. Finally, Section V succinctly

summarizes the key findings and contributions of this work.

II. RELATED WORKS

The Information-Centric Networking (ICN) paradigm has wit-

nessed the proposal of various architectural frameworks in

recent years. It provides diverse applications with low atency

and high throughput communications. ICN architectures offer

inherent advantages such as efficient content distribution and

retrieval, scalability, and enhanced content security. Content

discovery within the network is facilitated by a name search

service, followed by content retrieval utilizing name-based

routing mechanisms. Notably, storage decisions for integrated

content are also predicated upon names [7]. A comprehensive

review of in-network caching approaches in network appli-

cations such as VANET, IoT and WSN has been presented

so far. In network caching is a technique to optimize the

use of network resources, reduce traffic and speed up content

discovery on the network [8].

The Content-Centric Networking (CCN) architecture, intro-

duced by Jacobsen in 2009, emerged as a frontrunner amongst

ICN proposals [9]. In CCN, communication is initiated by

the content consumer node, which transmits interest and data

messages that are subsequently routed through the network.

Upon generation of an interest message by the consumer node,

the Content Store (CS) is initially searched for the requested

content. If the content retrieval is unsuccessful, the system

consults the Pending Interest Table (PIT) to ascertain if any

preceding interest for the identical content exists. A new entry

is only added to the PIT if no such record is found. The

next hop for the interest packet is determined by querying the

Forwarding Information Base (FIB). Packets are broadcasted

in the absence of pertinent information within the FIB table

[9]. However, CCN is susceptible to performance limitations,

including increased delays and reduced throughput.

Network coding has been proposed as a solution to enhance

CCN performance, with various coding schemes undergoing

comparative analysis [10]. One categorization of network

coding differentiates between binary (XOR) and Random

Linear Network Coding (RLNC) approaches. While RLNC

represents a prevalent method employed in research literature,

it is encumbered by a significant decoding delay. To decode

n content chunks, the receiver necessitates n independent,

linearly encoded packets. The coefficient matrix (n*n) located

within the Interest header plays a role in determining packet

linear independence. However, this method introduces substan-

tial computational and communication overhead. NetCodCCN,

3

∈ ∈

∈

N

introduced as a response to the shortcomings identified in

prior research, eliminates customer information from Interests,

thereby facilitating seamless integration. Furthermore, it incor-

porates packet aggregation techniques to augment throughput

during network congestion periods. Additionally, it proposes a

parallel interest transmission method, which speeds up content

retrieval [11].

Network resource optimization, particularly bandwidth uti-

lization, has been a key focus of research efforts within the

ICN domain. In 2016, a method was introduced that leverages

interest aggregation and splitting techniques to achieve this

goal [12]. When multiple clients request content with iden-

Algorithm 1 Decentralized Coded Caching [4]

procedure PLACEMENT

for K [K], n [N] do

user k independently caches a subset of
MF bits of file n, chosen uniformly at random

end for

end procedure

procedure DELIVERY(d1, ..., dK)

for s = K, K − 1, ..., 1 do

for S ⊂ [K] :| S |= s do server sends ⊕k∈SV

tical names, routers can aggregate these interests, enhancing

network efficiency. Additionally, interests destined for separate

sources are strategically split to prevent the transmission

of redundant content chunks. Notably, intermediate network

end for

end for

procedure

k,S\{k}

nodes solely store the original, uncoded content chunks. This

approach eliminates the need for encoding and decoding oper-

ations at these nodes, thereby minimizing processing overhead.

The NC-CCN architecture, designed to facilitate parallel data

forwarding, proposes several modifications to the conventional

CCN architecture [13]. A key modification involves replacing

procedure DELIVERY(d1, ..., dK)

for n [N] do

server sends enough random linear combinations

of bits in file n for all requesting it to decode

end for
procedure

the Pending Interest Table (PIT) with the Interest Forwarding

Table (IFT). The IFT leverages a label field to enable parallel

forwarding functionalities. Interests with identical names are

distinguished by unique labels, allowing routers to identify

and handle multiple content requests that share a common

name but possess distinct tags or interfaces. This enables the

transmission of diverse content items to interfaces associated

with different tags.

In 2017, Parisis et al. presented research on the integration

of fountain coding with opportunistic ICN through the uti-

lization of Persistent Interests (PIs) disseminated throughout

the network [14]. This approach empowers forwarders to

dynamically adjust their bitrate based on available bandwidth.

The content server partitions packets into two distinct lay-

ers, enabling the receiver to prioritize retrieval of the most

critical bits. While this method facilitates faster decoding,

it may come at the expense of a reduction in overall video

quality. With the objective of enhancing both throughput and

video quality, Saltarin et al. introduced an adaptive video

streaming technique over HTTP (DASH) that leverages the

multicasting capabilities of Named Data Networking (NDN)

and incorporates network coding to eliminate the need for

inter-node coordination [15]. Finally, Matsuzono et al.’s L4C2

design exemplifies how in-network caching, multi-path data

transfer, and network coding can be synergistically employed

to improve video streaming quality [16]. In this design,

network nodes estimate factors such as delay and packet loss

probability in upstream nodes. This estimation empowers them

to recover lost data packets with minimal delay by leveraging

both in-network caching and coded data packets.

A critical challenge within CCN is the potential for redun-

dant data storage and the associated network resource wastage.

To address this issue, a method incorporating popularity tables

within intermediate nodes has been proposed [17]. These

tables function by storing only the most popular content within

caches, thereby minimizing overall data storage requirements

and demonstrably increasing cache hit rates. However, this

approach introduces a trade-off, necessitating a significant

investment in memory capacity to accommodate both the

caching and popularity tables. This increased memory foot-

print can potentially lead to elevated processing delays. The

Cache Pressure-Aware Caching (CPAC) scheme utilizes two

distinct algorithms for the selection of storage nodes and cache

replacement strategies [18]. A crucial element in storage node

selection is the verification of cache status, achieved through

a combination of exchange rate and cache occupancy rate

metrics. Additionally, pressure exerted on caches throughout

the network is calculated. However, limitations exist within

these schemes, as they do not consider the network of caches

in its entirety, potentially leading to suboptimal network-

wide performance. The PT-CACHE Method adopts a distinct

approach, leveraging the Zipf distribution to calculate content

popularity [19]. Popularity is then categorized into four distinct

levels, with the most popular content strategically placed

within caches situated closest to users. Furthermore, network

topology and the relative positioning of nodes within the

network are factored into the selection of caches for the most

popular content. It is noteworthy that this method does not

incorporate network coding techniques.

Proactive caching represents an innovative approach to

content storage within user-proximal caches. This method

leverages periods of low network traffic to pre-cache con-

tent, and it operates through distinct placement and delivery

phases. Madah Ali and Niesen have proposed methodologies

for implementing these phases using both centralized and

decentralized approaches [4], [5]. The decentralized algorithm

is presented in Algorithm 1.

During the placement phase of proactive caching, a strategic

selection of content segments is stored within caches situated

4

l=1

{ } ∈

∈ { }

i=1

≤

{ }

−
L

→ ≤

X

L

∈
L

in close proximity to users. This pre-positioning facilitates

content accessibility during peak-traffic periods, thereby max-

imizing opportunities for multicast transmissions. The subse-

quent delivery phase focuses on reducing the transmission rate

by employing encoding techniques on user requests originating

from various data streams. The placement phase is inherently

constrained by the available cache capacity, while the delivery

phase is limited by the bandwidth of the shared link. As the

number of caches increases within the network, the overall

transfer rate demonstrably decreases. The decentralized coded

caching method, in contrast, encompasses a single placement

procedure and two distinct delivery procedures. During cache

placement, a random selection of M/N bits from each file is

deposited within the cache. In this context, M represents the

cache size relative to the total number of files (N) stored on the

server. The specific delivery procedure employed is contingent

upon the cache size. When the cache size exceeds one unit,

the first delivery procedure is executed; otherwise, the second

procedure is invoked.

The practical implementation of coded caching presents

several significant challenges, including network topology

considerations, asynchronous user requests, and the inherent

heterogeneity of content popularity [20]. Existing network

topologies for basic caching schemes were originally devel-

oped for distinct network models, such as tree networks,

device-to-device communication paradigms, and hierarchical

caching architectures. In contrast, primary coded caching

introduces an additional layer interposed between the server

and user entities. References [21], [22]. propose a two-tier

hierarchical caching system. The scenarios explored by Madah

Ali assume a condition where the number of files surpasses

the number of users. However, references [23], [24] delve into

both centralized and decentralized grouping methodologies

applicable to scenarios with a larger user base. A caching

system designed to store two distinct content types is pre-

sented in references [25], [26]. The first content type mirrors

the design proposed by Maddah Ali, while the second type

comprises linear combinations of sub-files referred to as keys.

Users possessing keys retrieved from multiple caches can

reconstruct the corresponding content, thereby facilitating the

preservation of user privacy within the network. Notably, the

first paper establishes the precondition L K/2, whereas the

second paper explores the scenario where L > K/2. These

methods are inherently centralized and may not be well-suited

for dynamic network environments characterized by frequent

topological changes.

The different popularity of files is not considered in previous

references and all files are considered equally popular, with a

probability distribution of pn = 1/N . However, it is known

that some files are more popular than others so content

with non-uniform distribution and multi-level popularity is
introduced. The popularity of level i is determined by the

First(HPF) caching method, the most popular files are stored

in the cache with the highest popularity level. Although the

expected rate is reduced by storing the most popular files for

an individual cache, it is suboptimal for multiple caches.

To address this issue, the files were divided into L groups

based on popularity, where Nl is the number of files in the

l-th group, satisfying the condition L Nl = N . In the

placement phase, files with similar popularity are grouped

together, while the differences in popularity within a group

are ignored. In the delivery phase, a file is randomly requested

based on the probability distribution of Pn n N , where

pn represents the popularity of the n-th file. The delivery

method L times for each user group in the basic decentralized

algorithm is called by the server [27]. However, this method

does not guarantee optimal order. A coded transfer scheme was

introduced based on the chromatic number index coding and

collision graph construction when the user demand is random

and follows a Zipf distribution. The expected achievable rate

is obtained from the random graph [28]. An index-based

placement and transfer policy with centralized coded caching

is proposed by Reddy and Karamchandani. In this approach,

each user is connected to L caches of neighbors in a rotating

manner, and users have multiple accesses to the caches. This

design is optimal for fewer than four caches [29], [30].

A multi-level popularity model is proposed by Hachem et al,

where users have multiple accesses to caches. The memory-

sharing strategy assigns a fraction of memory to each level

of popularity. For L levels of popularity, L subsystems are

considered separately. For each level i (i 1, ..., L), a

distinct subsystem is considered, consisting of Ni files and

K caches. Ui users are connected to each cache, and KUi
users request files of level i. Users with different degrees

of access (di) are connected to consecutive caches with

symmetric periodic cycles. Each subsystem has αiM memory

(αi [0, 1], L αi = 1) and stores non-coded chunks. The

αi i parameters are calculated using the M -possible partition

algorithm(H, I, J). The algorithm is shown in algorithm 2.

The description of the steps is given in references [6], [31].

This algorithm has three steps in which αi values are found

for all levels. Level H is contained the least popular files that

are not cached at all and αhM = 0. As a result, KUh of the

requested files are answered directly from the server. Uh is the

number of users connected to K caches that request unpopular

files. J is a set of the most popular files. The entire memory

is allocated to it (αjM = Nj/dj) and so is not needed to

send data from the server. But the amount of memory for level
ifiles is reduced by them. The expression (M j∈J Nj/dj
) in the calculation of the rate indicates this issue. The rest of

the memory is allocated to files of level i. Finally, the total

rate is calculated from the sum of the rates obtained from the

three popularity levels, which is calculated in equation (1).

ratio of the number of users requesting files at level i to MU

L
i∈I (

√
Niui)2 X

the total number of requested files at the same level(Ui/Ni).

The number of unpopular files is greater than the number

R (M) ≃
h∈H

KUh +
M −

L Nj/dj
−

i∈I

diUi (1)

of popular ones (i.e if (i < j) Ni Nj). Various

ways to partition files were introduced, the simplest method

considering two levels of popularity. In the Highest-Popularity-

In this system, users connected to shared caches cannot

encode with each other on the server, so a coloring-based

scheme was introduced. Users with a degree of access greater

j∈J

5

∈
{ }

←
← { } ← ∅ ← ∅

←

← ∪ { }

←

∈

∈ { }

q
m̃ ← (

q
)

Algorithm 2 M -feasible partition for all M [5].

Require: Number of caches K and parameters Ni, Ui, di i

for i 1, ..., L.

Ensure: An M -feasible partition for all M .
for all i = 1, ..., L do

1 Ni

in the findings presented in [6], [31], which demonstrate that

partitioning content based on the number of lowpopularity lev-

els yields optimal results. In this context, content categorized

into two popularity levels is strategically cached at K caches

situated in close proximity to end users (L = 2). The following

assumptions are established initially:
i k

M̃ ← 1
Ui

1 Ni • The files are assumed to have equal sizes and are divided
i

end for

(di
+ K) Ui

)
 into equal chunks.

• The number of caches is a multiple of the highest degree

(x1, ..., x2L) ← sort(m̃ 1, ..., m̃ L, M̃ i , ..., M̃ L) .

Step 1: Determine (H, I, J) for each interval

(xt, xt+1).
Set H0 1, ..., L , I0 , J0 .
for t 1, ..., 2L do

if xt = m̃ i for some i then

promote level i from H to I
Ht ← Ht−1 \ {i}

of access. The capacity of the caches is considered equal

and is not related to each other. Uncoded data is stored

in the content store and caches close to the user.

• The system is designed for multiple users, with varying

degrees of access to the cache taken into account. User

requests are processed concurrently.

Users who request files with a popularity level of i have

access to di caches. Caches and files are divided into two

It ← It−1 ∪ {i}
Jt Jt−1

else if xt = M̃ i for some i then

Promote level i from I to J
Ht ← Ht−1

It ← It−1 \ {i}
Jt Jt−1 i

end if

end for

Step 2: Compute the limits of the intervals as[Yt, Yt+1).
for all t ∈ {1, ..., 2L} do

groups based on the highest degree of access (dmax = 2).

Popular and unpopular files are requested by users with access

levels one and two, respectively. The basic decentralized

coded caching is used to store file chunks in caches. In the

content placement phase in caches, content chunks are cached

randomly and independently, using the M -feasible partition

algorithm. A certain amount of memory is assigned to each

level of popularity with this method, and for each level, a

fraction of memory is determined based on the capacity of

caches, the amount of user access to caches, and the number

of levels of popularity. The system is multi-user, and user

requests are considered simultaneously. Chunks are selected

Yt xt.SIt

end for

Y2L+1 ← ∞

+ TJt
− VIt based on cache capacity for each popularity level and stored

without coding. Each level of popularity is considered as a

separate subsystem with less memory, and content delivery is

done for each level separately. To integrate this method into the

Step 3: Determine the M -feasible partition for all M .
for all t 1, ..., 2L do

Set (Ht, It, Jt) as the M -feasible partition of

M [Yt, Yt+1)

 end for

than one are grouped together to avoid encoding between

requests of the same cache. To implement this design in

practice, coding between two different groups with different

caches is possible. In this paper, queues are created based on

the number of network caches for users with access to two

caches. With the addition of each cache to the network, a new

queue is added.

III. INTEGRATING CCN WITH DCC

WITH MULTI-LEVEL POPULARITY AND ACCESS

This work investigates a Content-Centric Network (CCN)

scenario involving a server and a collection of hosts. All hosts

possess content libraries containing identical files of fixed

size (F bits). The system model leverages decentralized coded

caching, which factors in content with varying popularity

levels and user access disparities. This approach is grounded

content-centric network, FIFO queues are used separately for

each popularity level. In the basic decentralized coded caching,

caches are single-user and use a single queue. During queuing,

interests are searched from other caches with different chunks.

Encoding is only possible between users connected to different

caches. When multiple users are connected to the same cache,

coding between their requests is not possible.

This paper proposes a novel multi-level access scheme for

caches within a coded caching framework. The scheme caters

to scenarios where users possess access to a single cache.

Under such conditions, the number of queues maintained

by the server is equivalent to the maximum access degree,

with a dedicated queue designated for each color. Notably,

the transmission rate across the network is reduced by pref-

erentially transmitting coded packets constructed from data

retrieved from two queues with distinct colors. In traditional

decentralized coded caching, each coding operation neces-

sitates a comprehensive search of the entire queue, leading

to potential processing inefficiencies. To address this limita-

tion, the proposed scheme introduces a color-based separation

strategy during the initial packet placement phase. Packets

are categorized and deposited into separate queues based on

their assigned color. This approach eliminates the need for

exhaustive queue searches during the encoding process, as

6

{ }
{ }

∈ { }

packets are retrieved from the beginning of their respective

color-designated queues.

A. The proposed method for the maximum degree of access

• Groups (or colors) are created based on the maximum
degree of user access to caches (dmax = 2).

• First-In-First-Out (FIFO) queues are created for each

group on the server. Their number(Num) is determined

by the equation (2).

Num = K/maxdi. (2)

K represents the number of caches, and maxdi represents

the maximum degree of popularity access at level i.

• Interests sent from a cache unit are placed in a queue.

• Interests are coded in a queue of the same color. This has
the following benefits:

– Coded data packets are easily decoded in sinks.

– To avoid interference between user requests con-

nected to a cache, queues with different colors are

created, and encoding is applied between two chunks

of the same color.

B. An example of the proposed method

A network with dmax = 2 is shown in Fig 1. The files con-

sist of 12 chunks with two levels of popularity and are divided

into two parts based on dmax. The first half of the chunks

of each file are randomly and uniformly stored in the orange

caches (e.g., 1, 2, 4, 5), while the green caches are filled with

the second half of the file chunks (e.g., 8, 9, 10, 11). Two

types of users request content, which is classified according

to their level of popularity. Users with access levels one and

two request popular and unwanted files, respectively.

Fig. 1: Coded caching for Multi-Level Popularity And Access

with K = 4 caches and L = 2 levels is illustrated. The caches

are colored by two colors and files are partitioned and colored

by the same colors. Users (Ui, i 1, 2)with two access

levels is connected to caches.

C. Coding Gain

• Users with access level di = 1 : The server’s queue

count is determined by the number of groups (colors).

Users connected to the same cache are placed in a queue.

Coding between two caches is shown in Fig 2(a). With

this approach, it takes only 12 transmissions to delivery

two files, whereas CCN requires 24. Coding gain is

calculated as the ratio of uncoded to coded transmissions

from reference [32], which gives a double advantage here.

• Users with access level di = 2 : The server has two types

of queues. Users connected to different caches are coded

together with the same color. Coding between two caches

is shown in Fig 2(b). With this method, sending two files

requires only 8 transmissions, resulting in a coding gain

of 3.

IV. INTEGRATE DECENTRALIZED CODED CACHING

WITH CCN

Incorporating decentralized coded caching into CCN necessi-

tates numerous changes to the architecture, which are outlined

below.

A. Changes in interest

In Content-Centric Networks, interests are sent to the server

from various receivers and are identified by a one-bit field with

a value of 0, while data packets are identified with a value

of 1. However, in decentralized coded caching, interests from

multiple receiver nodes are combined or coded together on the

server. To implement this in CCN, changes are required in the

interest and data packets. The files are divided into different

levels, each containing m chunks. C1..n = C1, C2, ..., Cn
are the names of the files involved in the XOR operation

and stored in the header of the data packet. The maximum

number of coded chunks is equal to n. More details about

these changes are provided below.

Interest (Ci, P, Color, SCache, SNew): When interests

are generated, the value of C1..n = Ci represents the

name of the packet requested by the user from the i-th

cache. P indicates the popularity of the content name.

The files stored in the cache are determined by color

(for example, orange color is included chunks of the

first half of the files, and green color is included second

half of the file). The set of cached chunks is denoted by

SCache : S1, S2, ..., Sn, which at the time of sending the

interest from sink i, is equal to Si. The index of the coded

chunks is placed in the SNew vector, which initially has

an empty value in the receiver and is filled in the sending

path or the server after the encoding operation.

Data (C1..n, P, Color, SCache, SNew): In the server, the

coded chunks are assembled in a data packet whose

number, for users with an access degree of one, ranges

from a minimum of one to a maximum of the number

of cache colors, and for users with the maximum access

degree, from one to k/maxdi . The CCN packet has a

field called HopLimit, which is similar to the TTL field

in an IP-based network. This field is used to transfer the

7

∪

| |

{ }
{ }

{ } { }

∈ { }

(a) (b)

Fig. 2: Users with different degrees of access. (a) Users with di = 1 (b) Users with di = 2 .

packets from the server. When there are no other requests

from other sinks for encoding in several time slots, the

packet is returned to the receiver before the timeout.

B. Interest processing

When an intermediate node interface receives an interest,

the CS is searched for the content name. If the CS has all m
chunks, data messages are generated and sent downstream. If

the CS has x chunks of content (x < m), a new interest

is created. For example, a cache that contains the first half

of a file (e.g., 1, 2, 4, 5) requests content A(popularity A

= 1). Along the path, it finds chunks 3, 7, 8 in the CS.

These chunks are stored in the SNew field and new interest is

sent to the server as (A, P : 1, 1, 2, 4, 5 , 3, 7, 8). This is

illustrated in Fig 3. At the server, the queue is selected based

on the content popularity and SCache. If SNew is not empty,

then SCache = SCache SNew. Based on the new SCache, the

basic decentralized coded caching procedure is executed.

C. Data packet processing

When receiving coded data, it is searched for content names

C1..n = C1, C2, ..., Cn in the PIT. To minimize search time,

each record in the PIT is compared with all names in the coded

data and a new chunk is added to the PIT with each search.

Deleting a record from the PIT is dependent on user access

and is equal to the ratio of the number of chunks to the user’s

access level. Once the set of requested chunks is complete, it

will be removed from the PIT.

D. Changes in CS

The uncoded data is stored in the content store, and popular

data has a higher priority for storage. Additionally, the LRU

(Least Recently Used) method is implemented as a content

storage replacement policy. If the content store is full, the

oldest unused record is selected for replacement by the LRU

method.

E. Recoding in intermediate nodes

After encoding, some data is sent back to the sink node

in uncoded form. To increase throughput, uncoded data from

different sink nodes is encoded in intermediate nodes. For

content with popularity=1 and di = 1, each data is encoded

using the primitive approach with packets from other sink

nodes. Unpopular content with di = 2 is encoded only

with data from the same half-file (same color), thus avoiding

encoding data from the shared cache.

V. EVALUATION

The simulation is implemented using MATLAB software. A

Content-Centric Network with 20 nodes is considered. 150

files are stored on the server and each file is divided into

12 chunks of equal size. Four caches of the same size are

considered close to the user. The caches have no connections

with each other and their capacity is 360 MB. The links in the

network have different capacities. The capacity of the content

store is estimated at 150 packets(150 MB).The simulation

parameters are shown in Table I.

Files are grouped by the highest degree of user access, with

a maximum degree of access of 2 (dmax = 2). An unlimited

number of users with different degrees of access (di 1, 2)

are connected to the cache. The number of user requests is

determined randomly using a Poisson distribution function,

with λ = Landai for each level of popularity (i), and the

8

Fig. 3: Interest packet processing

TABLE I: Problem parameters

Parameter Value Description

Capacity of the final caches 30 Files 360 MegaBits

Capacity of content store(CS) 150 Packets 150 MegaBits

Number of files 150

file size 12 MegaBits Same size

Number of file chunks 12 Same size

Size of the chunks 1 MegaBit

Link capacity 50 MegaBits 50 interests

Size of the time slice 1 second

Maximum access level 2

Simulation time 60 time slices

number of users for each sink node is determined using the

equation (3).

Number Of Useri = poissrnd(λ, [1,Number Of Sinks]) (3)

The improvement of the proposed method in terms of through-

put, delay, and cache hit rate is observable in all the diagrams

compared to the conventional CCN method. In the coded

caching method, the server XORs the interests, resulting in

a reduction in the number of transmissions in the network. In

each time slice, more packets can pass through the network

link, which increases the network’s throughput. Additionally,

the rate of throughput improvement is accelerated by re-

encoding the uncoded packets along the route.

The comparison of the proposed method’s throughput with

content-centric networks and the NetCodCCN protocol from

reference [11], using MATLAB software, is shown in Fig 4.

The value of λ (the number of user requests) varies from 4 to

10, and with the increase in λ, the throughput increases, nearly

doubling at λ = 8. When comparing this with the RLNC-based

method, the improvement in throughput is clearly noticeable.

The comparison of the three methods in terms of average

throughput is shown in Table II.

Various cache placement policies such as LRU, LFU, and

Random have been integrated with the proposed method

and CCN in Fig 5(a). By XORing packets in the network

for each flow, fewer packets need to be sent through the

channel, thereby allowing the network to respond to more

users based on the limited link capacity. This increases the

network’s throughput as the number of users increases. In the

CCN method, as the number of users increases, the number

of requests answered is limited by the link capacity, and

therefore, throughput cannot increase as it does with the coded

method. A comparison of the two methods at λ values ranging

9

26

24

22

20

18

16

14

12

10

8

4 5 6 7 8 9 10

 (4~10)

Fig. 4: Comparison of the throughput of the proposed method

with the Content-Centric Networks and the NetCodCCN pro-

tocol

TABLE II: Average throughput

λ CCN NetCodCCN λ (Min,Max) Coded Caching

4 8.804 9.393 1 , 3 12.27

5 9.286 12.16 2 , 3 16.04

6 9.804 13.07 2 , 4 18.71

7 10.14 15.29 3 , 4 19.50

8 10.98 16.05 3 , 5 22.63

9 12.80 16.09 3 , 6 23.39

10 15.63 17.96 4 , 6 24.32

from 3 to 12 shows nearly a threefold increase at λ = 9.

The comparison of the two methods in 5(b) is based on

different content store (CS) sizes of 50, 100, 150, 200, and 250

with a fixed number of users (λ = 7, generated by a Poisson

distribution). As the cache size increases, fewer coded data

packets are sent from the server to the requesting node, or in

other words, uncoded data packets are sent from intermediate

nodes to the receiver. This highlights the impact of coding

on increasing throughput. The improvement at a cache size of

100 shows nearly a threefold increase.

End-to-end delay refers to the average time between the

generation of a packet at the source node and its successful

delivery at the destination. Delay in CCN with the proposed

method is compared at λ values ranging from 3 to 11 in

Fig 5(c). As the number of users in the network increases,

the traffic in the network increases, and the server queue

becomes busier. This leads to increased response delays in

the network. However, overall, since the number of coded

packets transmitted is fewer than the uncoded ones in the

conventional CCN, more requests can be answered, ultimately

reducing delay. At λ = 5, the average delay is halved. Fig

5(d) shows the lower delay (Almost half the amount) of coded

data compared to uncoded data. The number of users is kept

constant. As the content store size increases, data is sent from

the middle of the network to the receiver, reducing the overall

delay.

Popular content is prioritized for storage in intermediate

caches, leading to an increased cache hit ratio as user demand

increases. The average cache size is set to 150 MB, and the λ
parameter varies from 3 to 12. Fig 5(e) shows that the cache

hit ratio triples at λ = 8.

Fig 5(f) provides a comparative analysis of cache hit rates

at different content store (CS) capacities. In this experiment,

the λ parameter is set to 7. The CS capacity varies in four

scenarios, including configurations of 50, 100, 150, 200, and

250 MB. As the CS capacity increases, a larger volume of data

can be stored in the network. Consequently, subsequent user

requests are more likely to be fulfilled by intermediate nodes,

resulting in an increased cache hit rate. Notably, the cache hit

rate nearly triples when the CS capacity is set to 100 MB.

VI. CONCLUSION

Caching popular content represents a well-established tech-

nique for enhancing network throughput and minimizing user-

experienced delays. This approach entails replicating fre-

quently accessed content within a distributed cache network,

strategically positioned for ease of user access. Consequently,

requested content can be delivered to users with demonstrably

reduced latency. Coded caching offers the additional benefit

of fulfilling multiple user requests with a single coded data

transmission. However, to achieve this efficiency, effective

management of both caching and coding functionalities is

paramount. A key challenge lies in the infeasibility of en-

coding user requests associated with a singular cache. Ad-

ditionally, searching for each individual user request within

the queue can incur significant processing costs. This paper

proposes a novel solution specifically designed to achieve op-

timal coding efficiency while minimizing associated costs. The

conducted evaluation demonstrably reveals that this approach

leads to substantial improvements in network throughput, user-

experienced delay, and overall cache hit ratio when compared

to conventional Content-Centric Network(CCN) architectures.

REFERENCES

[1] H. Asaeda, K. Matsuzono, Y. Hayamizu, H. H. HLAING, and A. Ooka,
“A survey of information-centric networking: The quest for innovation,”
IEICE Transactions on Communications, vol. 107, no. 1, pp. 139–153,
2024.

[2] R. Ahlswede, N. Cai, S.-Y. Li, and R. W. Yeung, “Network information
flow,” IEEE Transactions on information theory, vol. 46, no. 4, pp. 1204–
1216, 2000.

[3] F. Zhu, C. Zhang, Z. Zheng, and A. Farouk, “Practical network coding
technologies and softwarization in wireless networks,” IEEE Internet of
Things Journal, vol. 8, no. 7, pp. 5211–5218, 2021.

[4] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Transactions on information theory, vol. 60, no. 5, pp. 2856–2867,
2014.

[5] ——, “Decentralized coded caching attains order-optimal memory-rate
tradeoff,” IEEE/ACM Transactions On Networking, vol. 23, no. 4, pp.
1029–1040, 2014.

[6] J. Hachem, N. Karamchandani, and S. N. Diggavi, “Coded caching for
multi-level popularity and access,” IEEE Transactions on Information
Theory, vol. 63, no. 5, pp. 3108–3141, 2017.

[7] B. Li, D. Huang, Z. Wang, and Y. Zhu, “Attribute-based access control
for icn naming scheme,” IEEE Transactions on Dependable and Secure
Computing, vol. 15, no. 2, pp. 194–206, 2016.

[8] D. Doan Van and Q. Ai, “In-network caching in information-centric
networks for different applications: A survey,” Cogent Engineering,
vol. 10, no. 1, p. 2210000, 2023.

Throughput vs

CCN-LRU

NetCodCCN

Coded Caching-LRU

A
v
g
 T

h
ro

u
g
h
p
u
t(

M
b
p
s)

10

Cache Hit Ratio vs

CCN-LRU

CCN-LFU

CCN-Random

CC-LRU

CC-LFU

CC-Random

CCN-LRU

CCN-LFU

CCN-Random

CC-LRU

CC-LFU

CC-Random

40
CCN-LRU

CCN-LFU
35 CCN-Random

CC-LRU

CC-LFU
30 CC-Random

25

20

15

10

5

Throughput vs Throughput vs CacheSize
22

20

18

16

14

12

10

8

6

CCN-LRU

CCN-LFU

CCN-Random

CC-LRU

CC-LFU

CC-Random

0

3 4 5 6 7 8 9 10 11 12

 (3~12)

(a)

4
50 100 150 200 250

CacheSize

(b)

Delay vs
12

Delay vs CacheSize
13

11 12

10
11

10
9

9

8

8

7
7

6
6

5 5

CCN-LRU

CCN-LFU

CCN-Random

CC-LRU

CC-LFU

CC-Random

4

3 4 5 6 7 8 9 10 11

 (3~12)

(c)

4
50 100 150 200 250

CacheSize

(d)

50 50
Cache Hit Ratio vs Cache Size

45

40

35

30

25

20

15

10

45

40

35

30

25

20

CCN-LRU
CCN-LFU

15
CCN-Random

CC-LRU
10 CC-LFU

CC-Random

5
3 4 5 6 7 8 9 10 11 12

 (3~12)

(e)

50 100 150 200 250

Cache Size

(f)

Fig. 5: Comparing the proposed method with CCN with different cache-replacement policies. (a) Average throughput vs λ .
(b) Average throughput vs different cache size. (c) Delay vs λ. (d) Delay vs different cache size (e) CacheHit vs λ. (f) Cache

Hit vs different cache size.

[9] S. H. Ahmed, S. H. Bouk, and D. Kim, “Content-centric networks: an overview, applications and research challenges,” 2016.

C
ac

h
e

H
it

 R
at

io
(%

)
A

v
g
 D

el
ay

(s
)

A
v
g
 T

h
ro

u
g
h
p
u
t(

M
b
p
s)

C
a
c
h

e
 H

it
 R

a
tio

(%
)

T
h
ro

u
g
h
p
u
t(

M
b
p
s
)

D
el

ay
(s

)

11

[10] O. Ben Rhaiem and L. Chaari, “Information transmission based on
network coding over wireless networks: a survey,” Telecommunication
Systems, vol. 65, no. 4, pp. 551–565, 2017.

[11] J. Saltarin, E. Bourtsoulatze, N. Thomos, and T. Braun, “Netcodccn:
A network coding approach for content-centric networks,” in IEEE
INFOCOM 2016-The 35th Annual IEEE International Conference on
Computer Communications. IEEE, 2016, pp. 1–9.

[12] Y. Liu and S.-Z. Yu, “Network coding-based multisource content deliv-
ery in content centric networking,” Journal of Network and Computer
Applications, vol. 64, pp. 167–175, 2016.

[13] G. Zhang and Z. Xu, “Combing ccn with network coding: An architec-
tural perspective,” Computer Networks, vol. 94, pp. 219–230, 2016.

[14] G. Parisis, V. Sourlas, K. V. Katsaros, W. K. Chai, G. Pavlou, and
I. Wakeman, “Efficient content delivery through fountain coding in op-
portunistic information-centric networks,” Computer Communications,
vol. 100, pp. 118–128, 2017.

[15] J. Saltarin, E. Bourtsoulatze, N. Thomos, and T. Braun, “Adaptive video
streaming with network coding enabled named data networking,” IEEE
transactions on multimedia, vol. 19, no. 10, pp. 2182–2196, 2017.

[16] K. Matsuzono, H. Asaeda, and T. Turletti, “Low latency low loss
streaming using in-network coding and caching,” in IEEE INFOCOM
2017-IEEE Conference on Computer Communications. IEEE, 2017,
pp. 1–9.

[17] C. Bernardini, T. Silverston, and O. Festor, “Mpc: Popularity-based
caching strategy for content centric networks,” in 2013 IEEE interna-
tional conference on communications (ICC). IEEE, 2013, pp. 3619–
3623.

[18] X. Luo and Y. An, “Cache pressure-aware caching scheme for content-
centric networking,” Turkish Journal of Electrical Engineering & Com-
puter Sciences, vol. 27, no. 2, pp. 795–806, 2019.

[19] Y. Chang, J. Guo, H. Wang, D. Man, and J. Lv, “An information-
centric network caching method based on popularity rating and topology
weighting,” Wireless Communications and Mobile Computing, vol. 2022,
2022.

[20] M. A. Maddah-Ali and U. Niesen, “Coding for caching: Fundamen-
tal limits and practical challenges,” IEEE Communications Magazine,
vol. 54, no. 8, pp. 23–29, 2016.

[21] N. Karamchandani, U. Niesen, M. A. Maddah-Ali, and S. N. Diggavi,
“Hierarchical coded caching,” IEEE Transactions on Information The-
ory, vol. 62, no. 6, pp. 3212–3229, 2016.

[22] L. Zhang, Z. Wang, M. Xiao, G. Wu, Y.-C. Liang, and S. Li, “Decentral-
ized caching schemes and performance limits in two-layer networks,”
IEEE Transactions on Vehicular Technology, vol. 67, no. 12, pp. 12 177–
12 192, 2018.

[23] M. M. Amiri, Q. Yang, and D. Gu¨ndu¨z, “Coded caching for a large
number of users,” in 2016 IEEE Information Theory Workshop (ITW).
IEEE, 2016, pp. 171–175.

[24] A. M. Ibrahim, A. A. Zewail, and A. Yener, “Coded placement for
systems with shared caches,” in ICC 2019-2019 IEEE International
Conference on Communications (ICC). IEEE, 2019, pp. 1–6.

[25] K. Wan, M. Cheng, D. Liang, and G. Caire, “Multiaccess coded caching
with private demands,” in 2022 IEEE International Symposium on
Information Theory (ISIT). IEEE, 2022, pp. 1390–1395.

[26] K. Krishnan Namboodiri and B. Sundar Rajan, “Multi-access coded
caching with demand privacy,” in 2022 IEEE Wireless Communications
and Networking Conference (WCNC). IEEE, 2022, pp. 2280–2285.

[27] U. Niesen and M. A. Maddah-Ali, “Coded caching with nonuniform
demands,” IEEE Transactions on Information Theory, vol. 63, no. 2,
pp. 1146–1158, 2016.

[28] M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “On the average per-
formance of caching and coded multicasting with random demands,”
in 2014 11th International Symposium on Wireless Communications
Systems (ISWCS). IEEE, 2014, pp. 922–926.

[29] K. S. Reddy and N. Karamchandani, “On the exact rate-memory trade-
off for multi-access coded caching with uncoded placement,” in 2018
International Conference on Signal Processing and Communications
(SPCOM). IEEE, 2018, pp. 1–5.

[30] ——, “Rate-memory trade-off for multi-access coded caching with
uncoded placement,” IEEE Transactions on Communications, vol. 68,
no. 6, pp. 3261–3274, 2020.

[31] J. Hachem, N. Karamchandani, and S. Diggavi, “Multi-level coded
caching,” in 2014 IEEE international symposium on information theory.
IEEE, 2014, pp. 56–60.

[32] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Me´dard, and J. Crowcroft,
“Xors in the air: practical wireless network coding,” IEEE/ACM Trans-
actions on networking, vol. 16, no. 3, pp. 497–510, 2008.

