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Abstract—Content-Centric Networking (CCN) offers a novel 
architectural paradigm that seeks to address the inherent limi- 
tations of the prevailing Internet Protocol (IP)-based networking 
model. In contrast to the host-centric communication approach 
of IP networks, CCN prioritizes content by enabling direct 
addressing and routing based on content identifiers. The potential 
performance improvements of CCN can be further amplified 
through optimized management of coded data storage and 
transmission strategies. Decentralized Coded Caching (DCC) 
emerges as a promising technique that harnesses the collective 
caching power of distributed network elements. By strategically 
pre-positioning frequently accessed content closer to potential 
consumers during periods of low network utilization, DCC has 
the potential to mitigate content transfer rates during peak 
traffic periods. This paper proposes a series of fundamental 
modifications to the CCN architecture by integrating DCC. The 
proposed framework incorporates differentiated coding strate- 
gies tailored to user access privileges, thereby eliminating the 
overhead associated with queue-based searching. Additionally, 
the framework facilitates recoding of uncoded data encountered 
along the content delivery path. These combined methodologies 
demonstrably enhance network throughput, elevate cache hit ra- 
tios, and consequently, reduce content delivery latency compared 
to conventional CCN implementations. 

Index Terms—Content-Centric Networks, Random Linear Net- 
work Coding, Decentralized Coded Caching, Multi-Level Popu- 
larity and Access 

 

I. INTRODUCTION 

he proliferation of mobile and smart communication 

systems in recent years has coincided with a surge in 

demand for video streaming services, leading to a substantial 

increase in network traffic. To address the content distribution 

challenges associated with this growth, novel architectural 

paradigms for the future internet are necessary. Content- 

Centric Networking (CCN) presents a significant departure 

from the traditional host-centric communication model of the 

TCP/IP architecture by prioritizing content itself. In CCN, 

data packets termed ”Interests” are routed based on unique 

content identifiers rather than the physical location of the 

content. Network nodes leverage three key data structures to 
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facilitate routing: the Pending Interest Table (PIT), Forwarding 

Information Base (FIB), and Content Store (CS). The CS 

plays a pivotal role by enabling content caching at individual 

nodes along the delivery path. This strategic caching approach 

reduces the physical distance between content and users, 

thereby enhancing overall network resource efficiency. Exten- 

sive research has been conducted on caching algorithms within 

the CCN framework, with Least Frequently/Recently Used 

(LFU/LRU) and Most Frequently/Recently Used (MFU/MRU) 

strategies being prominent examples, as documented in [1]. 

However, these existing caching schemes, while demonstra- 

bly effective in single-cache scenarios, exhibit performance 

limitations when scaled to multi-cache networks. Bandwidth 

constraints remain a significant challenge in data transmission 

scenarios. Optimizing network performance in CCN can be 

achieved through a two-pronged approach: strategic caching 

management at network nodes and the implementation of 

content encoding techniques during data transfer. 

Network coding, a method for information processing pi- 

oneered by Ahlswede [2], offers a promising solution. This 

technique facilitates the combination of Interests pertaining 

to identical content, enabling the transmission of a single, 

unified Interest packet across bottleneck links. This approach 

demonstrably improves network performance metrics such 

as delay and throughput. While the integration of Random 

Linear Network Coding (RLNC) with CCN has been explored 

extensively in prior research, this approach is not without 

its drawbacks. Notably, RLNC can incur significant decoding 

delays at the receiver end, as successful decoding necessitates 

the reception of n independent, linearly encoded packets for 

a single file. The average computational complexity of this 

operation is O(N 3). Therefore, the optimization of network 

coding algorithms and minimizing the computational overhead 

associated with encoding and decoding processes in networks 

has attracted the attention of the research community, in- 

cluding sparse network coding and unequal error protection, 

network coding and Instantly decoding of network coding [3]. 

The burgeoning storage capacities available in contemporary 

network architectures have fostered the exploration of di- 

verse caching strategies. These strategies encompass uncoded 

caching (the traditional approach), centralized coded caching, 

and decentralized coded caching. Caching schemes function 

by fulfilling user requests, partially or entirely, from content 

stored in local caches situated near the requesting user. Tra- 

ditional caching methodologies rely on unicast transmissions 

and refrain from incorporating coding techniques, thereby 

mailto:azmiraftab@comp.ui.ac.ir
mailto:a.montazerolghaem@comp.ui.ac.ir
mailto:b.mahboobi@srbiau.ac.ir


2 
 

limiting the potential benefits to the network’s overall caching 

infrastructure. 

Coded caching, a novel paradigm introduced by Maddah-Ali 

and Niesen [4], [5], leverages coding principles to significantly 

influence the performance of cache networks. This approach 

enables the efficient servicing of multiple user requests through 

multicast transmissions with a minimal number of coded trans- 

missions. Consequently, throughput demonstrably improves as 

the volume of encoded data increases within the network. 

However, inherent content popularity skews access patterns, 

resulting in non-uniform content access frequencies. To ad- 

dress this challenge, multi-level cache systems have been im- 

plemented, enabling users to access content from caches with 

varying popularity levels. A key limitation exists in that users 

connected to the same cache are inherently restricted from ben- 

efiting from inter-user content coding due to their shared cache 

association. Therefore, a critical challenge lies in developing 

solutions that maximize the number of coding opportunities 

that arise during interactions between user interests within the 

coding process. A coloring-based placement scheme, outlined 

in [6], proposes a user grouping strategy that ensures no two 

users within the same group share a common cache. This 

scheme capitalizes on the decentralized coded caching method, 

a technique lauded for its resilience to topological changes 

affecting the network connectivity between caches and the 

server, as it eliminates the need for server-side reconstruction 

events. In this paper, we present a novel approach that builds 

upon the foundation of decentralized coded caching while 

incorporating the advantages of coloring-based placement and 

the inherent content-centric nature of CCN. Our proposed 

method demonstrably enhances network transmission rates 

by maximizing the number of coding opportunities between 

user requests. This is achieved by eliminating the requirement 

for searching server queues, a significant advantage over 

conventional decentralized coded caching implementations. To 

succinctly summarize, the key contributions of this paper are 

as follows: 

• Caching of content is done randomly taking into account 
both popularity and cache size. 

• Significant modifications have been made in CCN archi- 

tecture to enable the incorporation of Multi-access Coded 

Caching in CCN. 

• This work implements a differentiated queuing strategy 

that segregates users based on their access privileges. This 

approach facilitates a significant increase in server-side 

coding operations. However, this trade-off is demonstra- 

bly outweighed by the elimination of search overhead 

associated with conventional queuebased retrieval mech- 

anisms. 

• This approach is scalable and can be implemented for 

any level of content popularity, as well as up to n users 

requesting content. 

• Recoding of data in intermediate nodes is performed on 

a level-by-level basis, taking into account the content 

popularity. This approach enhances the throughput. 

The remainder of this paper is meticulously structured to 

facilitate the dissemination of the presented research. Section 

II furnishes a comprehensive review of germane research 

efforts in the domains of Content-Centric Networking (CCN), 

random linear network coding, and coded caching. Subse- 

quently, Section III delves into the integration of a decen- 

tralized coded caching approach and a multi-level content 

popularity model within the CCN framework. This section 

meticulously details the architectural modifications undertaken 

to accommodate these enhancements. Section IV rigorously 

evaluates the performance characteristics of the proposed 

solution and compares them to the baseline performance of the 

conventional CCN architecture. Finally, Section V succinctly 

summarizes the key findings and contributions of this work. 

 

II. RELATED WORKS 

The Information-Centric Networking (ICN) paradigm has wit- 

nessed the proposal of various architectural frameworks in 

recent years. It provides diverse applications with low atency 

and high throughput communications. ICN architectures offer 

inherent advantages such as efficient content distribution and 

retrieval, scalability, and enhanced content security. Content 

discovery within the network is facilitated by a name search 

service, followed by content retrieval utilizing name-based 

routing mechanisms. Notably, storage decisions for integrated 

content are also predicated upon names [7]. A comprehensive 

review of in-network caching approaches in network appli- 

cations such as VANET, IoT and WSN has been presented 

so far. In network caching is a technique to optimize the 

use of network resources, reduce traffic and speed up content 

discovery on the network [8]. 

The Content-Centric Networking (CCN) architecture, intro- 

duced by Jacobsen in 2009, emerged as a frontrunner amongst 

ICN proposals [9]. In CCN, communication is initiated by 

the content consumer node, which transmits interest and data 

messages that are subsequently routed through the network. 

Upon generation of an interest message by the consumer node, 

the Content Store (CS) is initially searched for the requested 

content. If the content retrieval is unsuccessful, the system 

consults the Pending Interest Table (PIT) to ascertain if any 

preceding interest for the identical content exists. A new entry 

is only added to the PIT if no such record is found. The 

next hop for the interest packet is determined by querying the 

Forwarding Information Base (FIB). Packets are broadcasted 

in the absence of pertinent information within the FIB table 

[9]. However, CCN is susceptible to performance limitations, 

including increased delays and reduced throughput. 

Network coding has been proposed as a solution to enhance 

CCN performance, with various coding schemes undergoing 

comparative analysis [10]. One categorization of network 

coding differentiates between binary (XOR) and Random 

Linear Network Coding (RLNC) approaches. While RLNC 

represents a prevalent method employed in research literature, 

it is encumbered by a significant decoding delay. To decode 

n content chunks, the receiver necessitates n independent, 

linearly encoded packets. The coefficient matrix (n*n) located 

within the Interest header plays a role in determining packet 

linear independence. However, this method introduces substan- 

tial computational and communication overhead. NetCodCCN, 
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introduced as a response to the shortcomings identified in 

prior research, eliminates customer information from Interests, 

thereby facilitating seamless integration. Furthermore, it incor- 

porates packet aggregation techniques to augment throughput 

during network congestion periods. Additionally, it proposes a 

parallel interest transmission method, which speeds up content 

retrieval [11]. 

Network resource optimization, particularly bandwidth uti- 

lization, has been a key focus of research efforts within the 

ICN domain. In 2016, a method was introduced that leverages 

interest aggregation and splitting techniques to achieve this 

goal [12]. When multiple clients request content with iden- 

 
 

Algorithm 1 Decentralized Coded Caching [4]  

procedure PLACEMENT 

for K [K], n [N ] do 

user k independently caches a subset of 
MF bits of file n, chosen uniformly at random 

end for 

end procedure 

 
procedure DELIVERY(d1, ..., dK) 

for s = K, K − 1, ..., 1 do 

for S ⊂ [K] :| S |= s do server sends ⊕k∈SV 

tical names, routers can aggregate these interests, enhancing 

network efficiency. Additionally, interests destined for separate 

sources are strategically split to prevent the transmission 

of redundant content chunks. Notably, intermediate network 

end for 

end for 

procedure 

k,S\{k} 

nodes solely store the original, uncoded content chunks. This 

approach eliminates the need for encoding and decoding oper- 

ations at these nodes, thereby minimizing processing overhead. 

The NC-CCN architecture, designed to facilitate parallel data 

forwarding, proposes several modifications to the conventional 

CCN architecture [13]. A key modification involves replacing 

procedure DELIVERY(d1, ..., dK) 

for n [N ] do 

server sends enough random linear combinations 

of bits in file n for all requesting it to decode 

end for 
procedure 

the Pending Interest Table (PIT) with the Interest Forwarding   

Table (IFT). The IFT leverages a label field to enable parallel 

forwarding functionalities. Interests with identical names are 

distinguished by unique labels, allowing routers to identify 

and handle multiple content requests that share a common 

name but possess distinct tags or interfaces. This enables the 

transmission of diverse content items to interfaces associated 

with different tags. 

In 2017, Parisis et al. presented research on the integration 

of fountain coding with opportunistic ICN through the uti- 

lization of Persistent Interests (PIs) disseminated throughout 

the network [14]. This approach empowers forwarders to 

dynamically adjust their bitrate based on available bandwidth. 

The content server partitions packets into two distinct lay- 

ers, enabling the receiver to prioritize retrieval of the most 

critical bits. While this method facilitates faster decoding, 

it may come at the expense of a reduction in overall video 

quality. With the objective of enhancing both throughput and 

video quality, Saltarin et al. introduced an adaptive video 

streaming technique over HTTP (DASH) that leverages the 

multicasting capabilities of Named Data Networking (NDN) 

and incorporates network coding to eliminate the need for 

inter-node coordination [15]. Finally, Matsuzono et al.’s L4C2 

design exemplifies how in-network caching, multi-path data 

transfer, and network coding can be synergistically employed 

to improve video streaming quality [16]. In this design, 

network nodes estimate factors such as delay and packet loss 

probability in upstream nodes. This estimation empowers them 

to recover lost data packets with minimal delay by leveraging 

both in-network caching and coded data packets. 

A critical challenge within CCN is the potential for redun- 

dant data storage and the associated network resource wastage. 

To address this issue, a method incorporating popularity tables 

within intermediate nodes has been proposed [17]. These 

tables function by storing only the most popular content within 

caches, thereby minimizing overall data storage requirements 

and demonstrably increasing cache hit rates. However, this 

approach introduces a trade-off, necessitating a significant 

investment in memory capacity to accommodate both the 

caching and popularity tables. This increased memory foot- 

print can potentially lead to elevated processing delays. The 

Cache Pressure-Aware Caching (CPAC) scheme utilizes two 

distinct algorithms for the selection of storage nodes and cache 

replacement strategies [18]. A crucial element in storage node 

selection is the verification of cache status, achieved through 

a combination of exchange rate and cache occupancy rate 

metrics. Additionally, pressure exerted on caches throughout 

the network is calculated. However, limitations exist within 

these schemes, as they do not consider the network of caches 

in its entirety, potentially leading to suboptimal network- 

wide performance. The PT-CACHE Method adopts a distinct 

approach, leveraging the Zipf distribution to calculate content 

popularity [19]. Popularity is then categorized into four distinct 

levels, with the most popular content strategically placed 

within caches situated closest to users. Furthermore, network 

topology and the relative positioning of nodes within the 

network are factored into the selection of caches for the most 

popular content. It is noteworthy that this method does not 

incorporate network coding techniques. 

Proactive caching represents an innovative approach to 

content storage within user-proximal caches. This method 

leverages periods of low network traffic to pre-cache con- 

tent, and it operates through distinct placement and delivery 

phases. Madah Ali and Niesen have proposed methodologies 

for implementing these phases using both centralized and 

decentralized approaches [4], [5]. The decentralized algorithm 

is presented in Algorithm 1. 

During the placement phase of proactive caching, a strategic 

selection of content segments is stored within caches situated 
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in close proximity to users. This pre-positioning facilitates 

content accessibility during peak-traffic periods, thereby max- 

imizing opportunities for multicast transmissions. The subse- 

quent delivery phase focuses on reducing the transmission rate 

by employing encoding techniques on user requests originating 

from various data streams. The placement phase is inherently 

constrained by the available cache capacity, while the delivery 

phase is limited by the bandwidth of the shared link. As the 

number of caches increases within the network, the overall 

transfer rate demonstrably decreases. The decentralized coded 

caching method, in contrast, encompasses a single placement 

procedure and two distinct delivery procedures. During cache 

placement, a random selection of M/N bits from each file is 

deposited within the cache. In this context, M represents the 

cache size relative to the total number of files (N) stored on the 

server. The specific delivery procedure employed is contingent 

upon the cache size. When the cache size exceeds one unit, 

the first delivery procedure is executed; otherwise, the second 

procedure is invoked. 

The practical implementation of coded caching presents 

several significant challenges, including network topology 

considerations, asynchronous user requests, and the inherent 

heterogeneity of content popularity [20]. Existing network 

topologies for basic caching schemes were originally devel- 

oped for distinct network models, such as tree networks, 

device-to-device communication paradigms, and hierarchical 

caching architectures. In contrast, primary coded caching 

introduces an additional layer interposed between the server 

and user entities. References [21], [22]. propose a two-tier 

hierarchical caching system. The scenarios explored by Madah 

Ali assume a condition where the number of files surpasses 

the number of users. However, references [23], [24] delve into 

both centralized and decentralized grouping methodologies 

applicable to scenarios with a larger user base. A caching 

system designed to store two distinct content types is pre- 

sented in references [25], [26]. The first content type mirrors 

the design proposed by Maddah Ali, while the second type 

comprises linear combinations of sub-files referred to as keys. 

Users possessing keys retrieved from multiple caches can 

reconstruct the corresponding content, thereby facilitating the 

preservation of user privacy within the network. Notably, the 

first paper establishes the precondition L K/2, whereas the 

second paper explores the scenario where L > K/2. These 

methods are inherently centralized and may not be well-suited 

for dynamic network environments characterized by frequent 

topological changes. 

The different popularity of files is not considered in previous 

references and all files are considered equally popular, with a 

probability distribution of pn = 1/N . However, it is known 

that some files are more popular than others so content 

with non-uniform distribution and multi-level popularity is 
introduced. The popularity of level i is determined by the 

First(HPF) caching method, the most popular files are stored 

in the cache with the highest popularity level. Although the 

expected rate is reduced by storing the most popular files for 

an individual cache, it is suboptimal for multiple caches. 

To address this issue, the files were divided into L groups 

based on popularity, where Nl is the number of files in the 

l-th group, satisfying the condition L Nl = N . In the 

placement phase, files with similar popularity are grouped 

together, while the differences in popularity within a group 

are ignored. In the delivery phase, a file is randomly requested 

based on the probability distribution of Pn n  N , where 

pn represents the popularity of the n-th file. The delivery 

method L times for each user group in the basic decentralized 

algorithm is called by the server [27]. However, this method 

does not guarantee optimal order. A coded transfer scheme was 

introduced based on the chromatic number index coding and 

collision graph construction when the user demand is random 

and follows a Zipf distribution. The expected achievable rate 

is obtained from the random graph [28]. An index-based 

placement and transfer policy with centralized coded caching 

is proposed by Reddy and Karamchandani. In this approach, 

each user is connected to L caches of neighbors in a rotating 

manner, and users have multiple accesses to the caches. This 

design is optimal for fewer than four caches [29], [30]. 

A multi-level popularity model is proposed by Hachem et al, 

where users have multiple accesses to caches. The memory- 

sharing strategy assigns a fraction of memory to each level 

of popularity. For L levels of popularity, L subsystems are 

considered separately. For each level i (i  1, ..., L ), a 

distinct subsystem is considered, consisting of Ni files and 

K caches. Ui users are connected to each cache, and KUi 
users request files of level i. Users with different degrees 

of access (di) are connected to consecutive caches with 

symmetric periodic cycles. Each subsystem has αiM memory 

(αi  [0, 1],  L αi = 1) and stores non-coded chunks. The 

αi i parameters are calculated using the M -possible partition 

algorithm(H, I, J ). The algorithm is shown in algorithm 2. 

The description of the steps is given in references [6], [31]. 

This algorithm has three steps in which αi values are found 

for all levels. Level H is contained the least popular files that 

are not cached at all and αhM = 0. As a result, KUh of the 

requested files are answered directly from the server. Uh is the 

number of users connected to K caches that request unpopular 

files. J is a set of the most popular files. The entire memory 

is allocated to it ( αjM = Nj/dj ) and so is not needed to 

send data from the server. But the amount of memory for level 
ifiles is reduced by them. The expression ( M   j∈J Nj/dj 
) in the calculation of the rate indicates this issue. The rest of 

the memory is allocated to files of level i. Finally, the total 

rate is calculated from the sum of the rates obtained from the 

three popularity levels, which is calculated in equation (1). 

ratio of the number of users requesting files at level i to MU 

L
i∈I (

√
Niui)2 X 

the total number of requested files at the same level(Ui/Ni). 

The number of unpopular files is greater than the number 

R (M ) ≃  
h∈H 

KUh + 
M − 

L Nj/dj 
−

  
i∈I 

diUi (1) 

of popular ones (i.e if (i < j)   Ni   Nj). Various 

ways to partition files were introduced, the simplest method 

considering two levels of popularity. In the Highest-Popularity- 

In this system, users connected to shared caches cannot 

encode with each other on the server, so a coloring-based 

scheme was introduced. Users with a degree of access greater 

j∈J 
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Algorithm 2 M -feasible partition for all M [5].  

Require: Number of caches K and parameters  Ni, Ui, di i 

for i 1, ..., L. 

Ensure: An M -feasible partition for all M . 
for all i = 1, ..., L do 

1 Ni 

in the findings presented in [6], [31], which demonstrate that 

partitioning content based on the number of lowpopularity lev- 

els yields optimal results. In this context, content categorized 

into two popularity levels is strategically cached at K caches 

situated in close proximity to end users (L = 2). The following 

assumptions are established initially: 
i k 

M̃ ←  1  
Ui 

1 Ni • The files are assumed to have equal sizes and are divided 
i 

end for 

( di 
+ K ) Ui 

)
 into equal chunks. 

• The number of caches is a multiple of the highest degree 

(x1, ..., x2L) ← sort(m̃ 1, ..., m̃ L, M̃ i ,  ..., M̃ L ) .  

Step 1: Determine (H, I, J ) for each interval 

(xt, xt+1). 
Set H0 1, ..., L , I0 , J0 . 
for t 1, ..., 2L do 

if xt = m̃ i for some i then 

promote level i from H to I 
Ht ← Ht−1 \ {i} 

of access. The capacity of the caches is considered equal 

and is not related to each other. Uncoded data is stored 

in the content store and caches close to the user. 

• The system is designed for multiple users, with varying 

degrees of access to the cache taken into account. User 

requests are processed concurrently. 

Users who request files with a popularity level of i have 

access to di caches. Caches and files are divided into two 

It ← It−1 ∪ {i} 
Jt Jt−1 

else if xt = M̃ i  for some i then 

Promote level i from I to J 
Ht ← Ht−1 

It ← It−1 \ {i} 
Jt Jt−1 i 

end if 

end for 

 
Step 2: Compute the limits of the intervals as[Yt, Yt+1). 
for all t ∈ {1, ..., 2L} do 

groups based on the highest degree of access (dmax = 2). 

Popular and unpopular files are requested by users with access 

levels one and two, respectively. The basic decentralized 

coded caching is used to store file chunks in caches. In the 

content placement phase in caches, content chunks are cached 

randomly and independently, using the M -feasible partition 

algorithm. A certain amount of memory is assigned to each 

level of popularity with this method, and for each level, a 

fraction of memory is determined based on the capacity of 

caches, the amount of user access to caches, and the number 

of levels of popularity. The system is multi-user, and user 

requests are considered simultaneously. Chunks are selected 

Yt xt.SIt 

end for 

Y2L+1 ← ∞ 

+ TJt 
− VIt based on cache capacity for each popularity level and stored 

without coding. Each level of popularity is considered as a 

separate subsystem with less memory, and content delivery is 

done for each level separately. To integrate this method into the 

Step 3: Determine the M -feasible partition for all M . 
for all t 1, ..., 2L  do 

Set (Ht, It, Jt) as the M -feasible partition of 

M [Yt, Yt+1) 

   end for  

 

 

than one are grouped together to avoid encoding between 

requests of the same cache. To implement this design in 

practice, coding between two different groups with different 

caches is possible. In this paper, queues are created based on 

the number of network caches for users with access to two 

caches. With the addition of each cache to the network, a new 

queue is added. 

 

III. INTEGRATING CCN WITH DCC 

WITH MULTI-LEVEL POPULARITY AND ACCESS 

This work investigates a Content-Centric Network (CCN) 

scenario involving a server and a collection of hosts. All hosts 

possess content libraries containing identical files of fixed 

size (F bits). The system model leverages decentralized coded 

caching, which factors in content with varying popularity 

levels and user access disparities. This approach is grounded 

content-centric network, FIFO queues are used separately for 

each popularity level. In the basic decentralized coded caching, 

caches are single-user and use a single queue. During queuing, 

interests are searched from other caches with different chunks. 

Encoding is only possible between users connected to different 

caches. When multiple users are connected to the same cache, 

coding between their requests is not possible. 

This paper proposes a novel multi-level access scheme for 

caches within a coded caching framework. The scheme caters 

to scenarios where users possess access to a single cache. 

Under such conditions, the number of queues maintained 

by the server is equivalent to the maximum access degree, 

with a dedicated queue designated for each color. Notably, 

the transmission rate across the network is reduced by pref- 

erentially transmitting coded packets constructed from data 

retrieved from two queues with distinct colors. In traditional 

decentralized coded caching, each coding operation neces- 

sitates a comprehensive search of the entire queue, leading 

to potential processing inefficiencies. To address this limita- 

tion, the proposed scheme introduces a color-based separation 

strategy during the initial packet placement phase. Packets 

are categorized and deposited into separate queues based on 

their assigned color. This approach eliminates the need for 

exhaustive queue searches during the encoding process, as 



6 
 

{ } 
{ } 

∈ { } 

packets are retrieved from the beginning of their respective 

color-designated queues. 

 

 

A. The proposed method for the maximum degree of access 

• Groups (or colors) are created based on the maximum 
degree of user access to caches (dmax = 2). 

• First-In-First-Out (FIFO) queues are created for each 

group on the server. Their number(Num) is determined 

by the equation (2). 

Num = K/maxdi. (2) 

K represents the number of caches, and maxdi represents 

the maximum degree of popularity access at level i. 

• Interests sent from a cache unit are placed in a queue. 

• Interests are coded in a queue of the same color. This has 
the following benefits: 

– Coded data packets are easily decoded in sinks. 

– To avoid interference between user requests con- 

nected to a cache, queues with different colors are 

created, and encoding is applied between two chunks 

of the same color. 

 

 

B. An example of the proposed method 

A network with dmax = 2 is shown in Fig 1. The files con- 

sist of 12 chunks with two levels of popularity and are divided 

into two parts based on dmax. The first half of the chunks 

of each file are randomly and uniformly stored in the orange 

caches (e.g., 1, 2, 4, 5 ), while the green caches are filled with 

the second half of the file chunks (e.g., 8, 9, 10, 11 ). Two 

types of users request content, which is classified according 

to their level of popularity. Users with access levels one and 

two request popular and unwanted files, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Coded caching for Multi-Level Popularity And Access 

with K = 4 caches and L = 2 levels is illustrated. The caches 

are colored by two colors and files are partitioned and colored 

by the same colors. Users (Ui, i  1, 2 )with two access 

levels is connected to caches. 

C. Coding Gain 

• Users with access level di = 1 : The server’s queue 

count is determined by the number of groups (colors). 

Users connected to the same cache are placed in a queue. 

Coding between two caches is shown in Fig 2(a). With 

this approach, it takes only 12 transmissions to delivery 

two files, whereas CCN requires 24. Coding gain is 

calculated as the ratio of uncoded to coded transmissions 

from reference [32], which gives a double advantage here. 

• Users with access level di = 2 : The server has two types 

of queues. Users connected to different caches are coded 

together with the same color. Coding between two caches 

is shown in Fig 2(b). With this method, sending two files 

requires only 8 transmissions, resulting in a coding gain 

of 3. 

 

IV. INTEGRATE DECENTRALIZED CODED CACHING 

WITH CCN 

Incorporating decentralized coded caching into CCN necessi- 

tates numerous changes to the architecture, which are outlined 

below. 

 

A. Changes in interest 

In Content-Centric Networks, interests are sent to the server 

from various receivers and are identified by a one-bit field with 

a value of 0, while data packets are identified with a value 

of 1. However, in decentralized coded caching, interests from 

multiple receiver nodes are combined or coded together on the 

server. To implement this in CCN, changes are required in the 

interest and data packets. The files are divided into different 

levels, each containing m chunks. C1..n = C1, C2, ..., Cn 
are the names of the files involved in the XOR operation 

and stored in the header of the data packet. The maximum 

number of coded chunks is equal to n. More details about 

these changes are provided below. 

Interest (Ci, P, Color, SCache, SNew): When interests 

are generated, the value of C1..n = Ci represents the 

name of the packet requested by the user from the i-th 

cache. P indicates the popularity of the content name. 

The files stored in the cache are determined by color 

(for example, orange color is included chunks of the 

first half of the files, and green color is included second 

half of the file). The set of cached chunks is denoted by 

SCache : S1, S2, ..., Sn, which at the time of sending the 

interest from sink i, is equal to Si. The index of the coded 

chunks is placed in the SNew vector, which initially has 

an empty value in the receiver and is filled in the sending 

path or the server after the encoding operation. 

Data (C1..n, P, Color, SCache, SNew): In the server, the 

coded chunks are assembled in a data packet whose 

number, for users with an access degree of one, ranges 

from a minimum of one to a maximum of the number 

of cache colors, and for users with the maximum access 

degree, from one to k/maxdi . The CCN packet has a 

field called HopLimit, which is similar to the TTL field 

in an IP-based network. This field is used to transfer the 
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Fig. 2: Users with different degrees of access. (a) Users with di = 1 (b) Users with di = 2 . 

 

packets from the server. When there are no other requests 

from other sinks for encoding in several time slots, the 

packet is returned to the receiver before the timeout. 

 

B. Interest processing 

When an intermediate node interface receives an interest, 

the CS is searched for the content name. If the CS has all m 
chunks, data messages are generated and sent downstream. If 

the CS has x chunks of content ( x < m), a new interest 

is created. For example, a cache that contains the first half 

of a file (e.g.,  1, 2, 4, 5 ) requests content A(popularity A 

= 1). Along the path, it finds chunks 3, 7, 8 in the CS. 

These chunks are stored in the SNew field and new interest is 

sent to the server as (A, P : 1, 1, 2, 4, 5 , 3, 7, 8 ). This is 

illustrated in Fig 3. At the server, the queue is selected based 

on the content popularity and SCache. If SNew is not empty, 

then SCache = SCache  SNew. Based on the new SCache, the 

basic decentralized coded caching procedure is executed. 

 

C. Data packet processing 

When receiving coded data, it is searched for content names 

C1..n = C1, C2, ..., Cn in the PIT. To minimize search time, 

each record in the PIT is compared with all names in the coded 

data and a new chunk is added to the PIT with each search. 

Deleting a record from the PIT is dependent on user access 

and is equal to the ratio of the number of chunks to the user’s 

access level. Once the set of requested chunks is complete, it 

will be removed from the PIT. 

 

D. Changes in CS 

The uncoded data is stored in the content store, and popular 

data has a higher priority for storage. Additionally, the LRU 

(Least Recently Used) method is implemented as a content 

storage replacement policy. If the content store is full, the 

oldest unused record is selected for replacement by the LRU 

method. 

 

E. Recoding in intermediate nodes 

After encoding, some data is sent back to the sink node 

in uncoded form. To increase throughput, uncoded data from 

different sink nodes is encoded in intermediate nodes. For 

content with popularity=1 and di = 1, each data is encoded 

using the primitive approach with packets from other sink 

nodes. Unpopular content with di = 2 is encoded only 

with data from the same half-file (same color), thus avoiding 

encoding data from the shared cache. 

 

V. EVALUATION 

The simulation is implemented using MATLAB software. A 

Content-Centric Network with 20 nodes is considered. 150 

files are stored on the server and each file is divided into 

12 chunks of equal size. Four caches of the same size are 

considered close to the user. The caches have no connections 

with each other and their capacity is 360 MB. The links in the 

network have different capacities. The capacity of the content 

store is estimated at 150 packets(150 MB).The simulation 

parameters are shown in Table I. 

Files are grouped by the highest degree of user access, with 

a maximum degree of access of 2 (dmax = 2). An unlimited 

number of users with different degrees of access (di  1, 2 ) 

are connected to the cache. The number of user requests is 

determined randomly using a Poisson distribution function, 

with λ = Landai for each level of popularity (i), and the 
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Fig. 3: Interest packet processing 

 

TABLE I: Problem parameters 
 

Parameter Value Description 

Capacity of the final caches 30 Files 360 MegaBits 

Capacity of content store(CS) 150 Packets 150 MegaBits 

Number of files 150  

file size 12 MegaBits Same size 

Number of file chunks 12 Same size 

Size of the chunks 1 MegaBit  

Link capacity 50 MegaBits 50 interests 

Size of the time slice 1 second  

Maximum access level 2  

Simulation time 60 time slices 

 

 

number of users for each sink node is determined using the 

equation (3). 

Number Of Useri = poissrnd(λ, [1,Number Of Sinks]) (3) 

The improvement of the proposed method in terms of through- 

put, delay, and cache hit rate is observable in all the diagrams 

compared to the conventional CCN method. In the coded 

caching method, the server XORs the interests, resulting in 

a reduction in the number of transmissions in the network. In 

each time slice, more packets can pass through the network 

link, which increases the network’s throughput. Additionally, 

the rate of throughput improvement is accelerated by re- 

encoding the uncoded packets along the route. 

The comparison of the proposed method’s throughput with 

content-centric networks and the NetCodCCN protocol from 

reference [11], using MATLAB software, is shown in Fig 4. 

The value of λ (the number of user requests) varies from 4 to 

10, and with the increase in λ, the throughput increases, nearly 

doubling at λ = 8. When comparing this with the RLNC-based 

method, the improvement in throughput is clearly noticeable. 

The comparison of the three methods in terms of average 

throughput is shown in Table II. 

Various cache placement policies such as LRU, LFU, and 

Random have been integrated with the proposed method 

and CCN in Fig 5(a). By XORing packets in the network 

for each flow, fewer packets need to be sent through the 

channel, thereby allowing the network to respond to more 

users based on the limited link capacity. This increases the 

network’s throughput as the number of users increases. In the 

CCN method, as the number of users increases, the number 

of requests answered is limited by the link capacity, and 

therefore, throughput cannot increase as it does with the coded 

method. A comparison of the two methods at λ values ranging 
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Fig. 4: Comparison of the throughput of the proposed method 

with the Content-Centric Networks and the NetCodCCN pro- 

tocol 

TABLE II: Average throughput 
 

λ CCN NetCodCCN λ (Min,Max) Coded Caching 

4 8.804 9.393 1 , 3 12.27 

5 9.286 12.16 2 , 3 16.04 

6 9.804 13.07 2 , 4 18.71 

7 10.14 15.29 3 , 4 19.50 

8 10.98 16.05 3 , 5 22.63 

9 12.80 16.09 3 , 6 23.39 

10 15.63 17.96 4 , 6 24.32 

 

 

from 3 to 12 shows nearly a threefold increase at λ = 9. 

The comparison of the two methods in 5(b) is based on 

different content store (CS) sizes of 50, 100, 150, 200, and 250 

with a fixed number of users (λ = 7, generated by a Poisson 

distribution). As the cache size increases, fewer coded data 

packets are sent from the server to the requesting node, or in 

other words, uncoded data packets are sent from intermediate 

nodes to the receiver. This highlights the impact of coding 

on increasing throughput. The improvement at a cache size of 

100 shows nearly a threefold increase. 

End-to-end delay refers to the average time between the 

generation of a packet at the source node and its successful 

delivery at the destination. Delay in CCN with the proposed 

method is compared at λ values ranging from 3 to 11 in 

Fig 5(c). As the number of users in the network increases, 

the traffic in the network increases, and the server queue 

becomes busier. This leads to increased response delays in 

the network. However, overall, since the number of coded 

packets transmitted is fewer than the uncoded ones in the 

conventional CCN, more requests can be answered, ultimately 

reducing delay. At λ = 5, the average delay is halved. Fig 

5(d) shows the lower delay (Almost half the amount) of coded 

data compared to uncoded data. The number of users is kept 

constant. As the content store size increases, data is sent from 

the middle of the network to the receiver, reducing the overall 

delay. 

Popular content is prioritized for storage in intermediate 

caches, leading to an increased cache hit ratio as user demand 

increases. The average cache size is set to 150 MB, and the λ 
parameter varies from 3 to 12. Fig 5(e) shows that the cache 

hit ratio triples at λ = 8. 

Fig 5(f) provides a comparative analysis of cache hit rates 

at different content store (CS) capacities. In this experiment, 

the λ parameter is set to 7. The CS capacity varies in four 

scenarios, including configurations of 50, 100, 150, 200, and 

250 MB. As the CS capacity increases, a larger volume of data 

can be stored in the network. Consequently, subsequent user 

requests are more likely to be fulfilled by intermediate nodes, 

resulting in an increased cache hit rate. Notably, the cache hit 

rate nearly triples when the CS capacity is set to 100 MB. 

VI. CONCLUSION 

Caching popular content represents a well-established tech- 

nique for enhancing network throughput and minimizing user- 

experienced delays. This approach entails replicating fre- 

quently accessed content within a distributed cache network, 

strategically positioned for ease of user access. Consequently, 

requested content can be delivered to users with demonstrably 

reduced latency. Coded caching offers the additional benefit 

of fulfilling multiple user requests with a single coded data 

transmission. However, to achieve this efficiency, effective 

management of both caching and coding functionalities is 

paramount. A key challenge lies in the infeasibility of en- 

coding user requests associated with a singular cache. Ad- 

ditionally, searching for each individual user request within 

the queue can incur significant processing costs. This paper 

proposes a novel solution specifically designed to achieve op- 

timal coding efficiency while minimizing associated costs. The 

conducted evaluation demonstrably reveals that this approach 

leads to substantial improvements in network throughput, user- 

experienced delay, and overall cache hit ratio when compared 

to conventional Content-Centric Network(CCN) architectures. 
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